Multi Stage Fuzzy Pid Load Frequency Controller in a Restructured Power System
نویسندگان
چکیده
In this paper, a multi stage fuzzy Proportional-Integral-Derivative (PID) type controller is proposed to solve the Load Frequency Control (LFC) problem in a restructured power system that operates under deregulation based on the bilateral policy scheme. In each control area, the effects of the possible contracts are treated as a set of new input signal in a modified traditional dynamical model. The multi stage controller uses the fuzzy switch to blend a Proportional-Derivative (PD) fuzzy logic controller with an integral fuzzy logic input. The proposed controller operates on fuzzy values passing the consequence of a prior stage on to the next stage as a fact. The salient advantage of this strategy is its high insensitivity to large load changes and disturbances in the presence of plant parameter variations and system nonlinearities. This newly developed strategy leads to a flexible controller with a simple structure that is easy to implement and therefore it can be useful for the real world power system. The proposed method is tested on a three-area power system with different contracted scenarios under various operating conditions. The results of the proposed controller are compared with the classical fuzzy PID type controller and mixed H2/H∞ controller through some performance indices to illustrate its robust performance.
منابع مشابه
A Robust Discrete FuzzyP+FuzzyI+FuzzyD Load Frequency Controller for Multi-Source Power System in Restructuring Environment
In this paper a fuzzy logic (FL) based load frequency controller (LFC) called discrete FuzzyP+FuzzyI+FuzzyD (FP+FI+FD) is proposed to ensure the stability of a multi-source power system in restructured environment. The whale optimization algorithm (WOA) is used for optimum designing the proposed control strategy to reduce fuzzy system effort and achieve the best performance of LFC task. Further...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملImprovement of Frequency Fluctuations in Microgrids Using an Optimized Fuzzy P-PID Controller by Modified Multi Objective Gravitational Search Algorithm
Microgrids is an new opportunity to reduce the total costs of power generation and supply the energy demands through small-scale power plants such as wind sources, photo voltaic panels, battery banks, fuel cells, etc. Like any power system in micro grid (MG), an unexpected faults or load shifting leads to frequency oscillations. Hence, this paper employs an adaptive fuzzy P-PID controller for f...
متن کاملMulti-Stage Fuzzy Load Frequency Control Based on Multi-objective Harmony Search Algorithm in Deregulated Environment
A new Multi-Stage Fuzzy (MSF) controller based on Multi-objective Harmony Search Algorithm (MOHSA) is proposed in this paper to solve the Load Frequency Control (LFC) problem of power systems in deregulated environment. LFC problem are caused by load perturbations, which continuously disturb the normal operation of power system. The objectives of LFC are to mini small size the transient deviati...
متن کامل